Combustion Control of Premixed Swirl Flame Using Additional Injection

A. Koichi Hayashi *
Hiroyuki Sato*,
Tomohiro Ide*,
Takanobu Sawada*

* Aoyama Gakuin University (AGU)

10th International Workshop on Premixed Turbulent Flames Hotel Mainzer Hof, Mainz, Germany 2006. 8. 12 – 13.

Outline of this Presentation

As for the development of Active Combustion Control system,

- Motivation
 - motivation of developing the ACC system using additional gas injection method (AGI)
 - concept of outer injection nozzle array
- □ Prediction of Oscillatory Combustion
 - feature of OH* and CH* chemiluminesence
- □ Performance of Outer Injection
 - feature of controlling pressure fluctuation and emissions
- **□Summary**

Philosophy of Combustion Control

Additional Gas Injection (AGI) Method as an Actuation

Synchronization between pressure and heat release fluctuations

Needs on *combustion control technology*

[Image of AGI]

- ✓ Active Combustion Control (ACC) technology
 - What is the benefit to use AGI technology?
 - modulation of the heat release fluctuation (HRF)
 - improvement on feedback loop, phase shift the HRF
 - jet momentum
 - **⇒** share effect, disturbance of the HRF

Integration of control theory and AGI actuation

Correlation of Fundamental Factor on ACC

Concept for combustion control

·Acoustics ·Heat release ·Fluid dynamics

[Heat release] "Secondary Injection"

[Acoustic] "Thermo-Acoustic"

[Fluid dynamics] "Vortex"

- Development for **Closed Active Control System**
- · Robustness

·low-NOx condition

Secondary Injection Nozzle

Clarify the interaction between vortex and oscillatory flame **Development for open** active control

> ·high-efficiency combustion

Vortex

Swirler

Configuration of Test Combustor

- inlet tube is about 100-mm long and its diameter is 30-mm
- combustor is the size of 125-mm squire in cross-sectional area, 600-mm long
- swirl stabilized flame holder (swirl angle; 15 deg) is used
- outer injection nozzles provides additional gas actuation

Sensor and Actuator

> Pressure transducer

- Piezo-resistive Absolute Pressure Sensor; 4045A KISTLER
- Sensitivity; 2.5-500mV/bar

> Outer injection (secondary jets)

> Optical device

- Si-Photo Diode;S2281-04 HAMAMATSU
- wavelength; 190-1100 nm

> Actuator

- Servo Valve;58A-262, HSC Controls Inc.
- frequency; ~ 400 Hz(user checked)

Pressure Transducer and Optical Sensors

Feature of Oscillatory Flame - OH* chemiluminesence -

Flame conditions; =0.75, Q_f=12 l/min, Q_a=152 l/min (oscillatory flame)

- flame is deformed or fluctuated due to the flow field of recirculation zone
- heat release fluctuation will be strong at the flame top in which intensive deformation occurs
- disturbance of the recirculation flow seems to be effective actuation for ACC

Additional Injection from Outer Equipped Nozzles

What is the benefit?

Emission Suppression

What is the effective gas for additional injection?

[Open-loop control]

Comparison between Open- and Closed-Control

Summary

In this study, a mixed H²/H controller for a practical active combustion control system was developed to control flame stability and emissions. The results are the follows:

- Additional air-jet injected from outer of the swirl-type flame holder was one of the effective actuation for ACC. The actuated air-jet suppressed the pressure fluctuation and NOx emissions.
- 2. The hybrid controller is adopted for the robustness and good performance. The H algorithm is expected to guarantee the robustness against modeling error, and the H^2 algorithm was expected to achieve good performance.
- **3.** The developed ACC system with the mixed H^2/H controller indicated a good performance to suppress the strong pressure fluctuation with the result of 25dB reduction (from 91 dB to 66 dB).

